Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 28, 2026
-
Abstract Despite extensive research on piezoelectric polymers since the discovery of piezoelectric poly(vinylidene fluoride) (PVDF) in 1969, the fundamental physics of polymer piezoelectricity has remained elusive. Based on the classic principle of piezoelectricity, polymer piezoelectricity should originate from the polar crystalline phase. Surprisingly, the crystal contribution to the piezoelectric strain coefficientd31is determined to be less than 10%, primarily owing to the difficulty in changing the molecular bond lengths and bond angles. Instead, >85% contribution is from Poisson's ratio, which is closely related to the oriented amorphous fraction (OAF) in uniaxially stretched films of semicrystalline ferroelectric (FE) polymers. In this perspective, the semicrystalline structure–piezoelectric property relationship is revealed using PVDF‐based FE polymers as a model system. In melt‐processed FE polymers, the OAF is often present and links the crystalline lamellae to the isotropic amorphous fraction. Molecular dynamics simulations demonstrate that the electrostrictive conformation transformation of the OAF chains induces a polarization change upon the application of either a stress (the direct piezoelectric effect) or an electric field (the converse piezoelectric effect). Meanwhile, relaxor‐like secondary crystals in OAF (SCOAF), which are favored to grow in the extended‐chain crystal (ECC) structure, can further enhance the piezoelectricity. However, the ECC structure is difficult to achieve in PVDF homopolymers without high‐pressure crystallization. We have discovered that high‐power ultrasonication can effectively induce SCOAFin PVDF homopolymers to improve its piezoelectric performance. Finally, we envision that the electrostrictive OAF mechanism should also be applicable for other FE polymers such as odd‐numbered nylons and piezoelectric biopolymers.more » « less
-
Abstract Relaxor ferroelectric polymers exhibiting a giant electrocaloric effect (ECE) can potentially be used to create next‐generation solid‐state coolers. Under an electric field, poly(vinylidene fluoride‐trifluoroethylene‐chlorofluoroethylene) terpolymer goes through a large dipolar entropy change producing a high adiabatic temperature change (ΔTECE). This work resolves the molecular origins of the large entropy change behind the electric field‐induced dipole switching. A Fourier transform infrared spectroscopy equipped with a high voltage source is used to operandoly observe the characteristic molecular vibrational modes. A short‐range trans (T) conformation of the CF2‐CH2dyads interrupted by a gauche (G) conformation, e.g., TTTG in the terpolymer chain, undergoes a dynamic transformation that leads to a corresponding ΔTECEwhenever an electric field is applied. The molecular dynamics simulation also proves that the energy barrier that the transformation from TTTGs into a long T sequence overcomes is smaller than that for all other conformations. A mixed solvent system is used to obtain T3G‐enriched terpolymer films exhibiting a 4.02 K ΔTECEat 60 MV m−1and these films are employed to manufacture a 2‐layer‐cascaded cooling device that achieves a 6.7 K temperature lift, the highest reported value for a 2‐layer cascaded device made of fluoropolymers.more » « less
An official website of the United States government
